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We present a theory of coherent shock-induced vibrational excitation of molecules in solids. We treat an
idealized impulsive shock wave traveling through a one-dimensional monatomic lattice doped with a diatomic
impurity and focus on the ultrafast dynamics occurring within the localized shock front itself. We present a
simple classical mechanical model based on the theory of collision-induced translational to vibrational energy
transfer, modified to treat the multiple correlated impulsive forces acting on the internal degrees of the molecule
as the shock wave passes, and compare the predictions of the theory with classical molecular dynamics
simulations. It is found that our approach provides a qualitative description of the behavior observed in
molecular dynamics simulations and, in some cases, gives quantitative predictions of the vibrational energy
uptake as a function of shock velocity. The potential relevance of the model to shock-induced chemical
processes in solids is discussed.

I. Introduction

Shock waves in solids create extreme nonequilibrium condi-
tions which can lead to a range of novel physical and chemical
processes. A particularly interesting and important example is
the detonation of an energetic material, which can be initiated
by energy transfer from a propagating mechanical shock wave
into intramolecular degrees of freedom. This excitation leads
to activation of the reaction coordinate for molecular decom-
position and, ultimately, to the exothermic chemistry underlying
the detonation process. A great deal of interest has recently
been directed at understanding the elementary dynamical steps
underlying the initiation of detonation in shocked energetic
materials.1,2 Aside from its fundamental interest as a many-
body ultrafast dynamical process, there is considerable practical
importance associated with this problem, particularly as it relates
to the design of energetic materials that are resistant to accidental
shock-induced detonation. Recent advances in time-resolved
experimental methods,3-15 combined with developments in
computer simulation and analytic theories,16-33 are providing
an increasingly detailed molecular view of the early events of
shock-induced chemistry in solids.
One mechanism that contributes to shock-induced solid state

chemistry involves the thermal activation of intramolecular
degrees of freedom by hot lattice vibrations in the wake of the
traveling shock front. A multiphonon up-pumping model has
been proposed to describe this process and has been the subject
of both experimental9,10,13,34,35and theoretical8,16,24,26,31studies.
The model predicts a time scale for up-pumping on the order
of 100 ps. For shock velocities in the range 103-104 m s-1,
this corresponds to a spatial region behind the shock wave of
order 103-104 Å in thickness. Defects, impurities, and other
imperfections of the solid enhance the decay of the localized
shock wave energy into thermal lattice motion and cause the
formation of “hot spots” in the solid, where initiation by
multiphonon up-pumping can occur more readily.7,9,18,24,28,36-41

Although the thermal activation mechanism undoubtedly
plays an important role in shock-induced solid state chemical
processes, alternative mechanisms can be imagined, wheredirect
energy transfer from the shock front itself into molecular
vibrations occurs. Experiments, continuum theories, and ato-

mistic molecular dynamics simulations suggest that the traveling
shock front can be highly localized on atomic distance
scales.20,21,30,42-50 This highly localized and coherent pulse of
mechanical energy can, in turn, subject the intramolecular modes
of molecules in shocked solids to highly impulsive forces on
ultrafast time scales, qualitatively similar to those experienced
by molecules in high kinetic energy collisions.51

In this paper, we investigate the ultrafast vibrational excitation
of molecules in shocked solids from a theoretical perspective.
We focus on the dynamics of coupled intramolecular and
intermolecular motion that occurs within the advancing shock
front itself. We treat a highly idealized model, consisting of
an atomically sharp shock front traveling down a one-
dimensional monatomic lattice containing a single diatomic
impurity, and employ classical mechanics to model the dynam-
ics. We develop a simple analytic theory which captures the
key aspects of the ultrafast dynamics of vibrational excitation
and compare its predictions with the results of classical
molecular dynamics simulations. The goal of this work is to
study the qualitative dynamical mechanisms underlying ultrafast
vibrational excitation of molecules in solids by the passage of
localized shock fronts. We pursue this goal in the computa-
tionally tractible and intuitively appealing setting of classical
mechanics of a one-dimensional system, at the expense of
realism and its associated complexities. In particular, we ignore
the quantum mechanical nature of molecular vibrations, mul-
tidimensional effects, and the possibly ill-defined spatial
structure of the shock wave front. Nonetheless, we believe that
the general principles identified in this work apply at least
qualitatively to the more complex processes in real systems and
may contribute to understanding the potentially important but
relatively unexplored role of coherent ultrafast excitation in
shock-induced chemistry.
Within the idealizations of our treatment, the ultrafast

excitation of a molecule in a shocked solid occurs via impulsive
collisions between the molecule and constituent lattice atoms
as the localized shock front encounters and passes through the
impurity. However, unlike the case of collisional translation-
vibration (T-V) energy transfer, the spatial localization of the
traveling shock front will lead to different parts of the molecule
experiencing these forces at different times, so that the internal
modes of the molecule will be perturbed bytrains of localized
pulses, in a manner reminiscent of molecules interacting withX Abstract published inAdVance ACS Abstracts,June 1, 1997.
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shaped optical pulse sequences in spectroscopic control
experiments.52-56 A localized shock front traveling at 3× 103

m s-1 will cross a molecule of width 3 Å in under 100 fs. These
time scales are short enough for the timings of these impulsive
forces to interact with molecular vibrational motion in a coherent
manner: the correlation between the intrinsic phases of the
intramolecular oscillators and the timing of the multiple
collisions plays a key role in the overall energy transfer.
The simple model of coherent ultrafast energy uptake by

molecules in localized shock fronts developed in this paper takes
this correlation explicitly into account. Our approach is based
on the classical mechanical theories of collisional excitation of
molecular vibrations developed in the 1960s and 1970s.51,57-61

This previous work treated single encounters between (usually
diatomic) molecules and atomic collision partners. Here, we
extend the gas phase theory to treat the effect of highly
correlated multiple collisions experienced by molecules in
shocked solids. Our model is developed for the simplest case
of a diatomic impurity embedded in a one-dimensional atomic
solid, and its predictions are compared with molecular dynamics
simulations. It should be noted, however, that similar phenom-
enology is also observed in higher dimensional simulations, and
thus the model presented here is more general than our one-
dimensional development. The process of shock-induced
vibrational excitation is complementary to a related coherent
energy transfer mechanism that we have studied recently:
coherent pulse trains of nanoscale shock waves created by
photodissociation of molecular impurities in atomic solids.62

The rest of this paper is organized as follows: In section II,
the one-dimensional model studied is described. In section III,
the classical theory of collisional excitation of molecular
vibrations is briefly reviewed, and its extension to shock-induced
excitation is presented. In section IV, the predictions of the
model are compared with molecular dynamics simulations
performed on the one-dimensional model problem. Finally, a
discussion is given in section V.

II. System

The system considered is composed of a one-dimensional
monatomic solid, made up of host atoms with massmA and
containing a single diatomic impurity molecule with atomic
massesmB andmC. Figure 1 shows a schematic view of a small
portion of the infinite one-dimensional solid. An idealized shock
wave, a single atom in width, passes through the solid from
left to right with a shock velocityνs. The overall propagation
of the shock wave occurs by sequential collisions between the
lattice atoms. Except for small thermal motion, the lattice atoms
move only when they are within the traveling shock front itself.
They then translate with aparticle velocity ν0, which is less
than the shock velocity. For a linear chain of hard-sphere atoms
with diameterd and lattice spacingl, the particle velocities in
the undoped lattice are piecewise constant functions of time
(i.e., eitherν0 or zero) as a chain of elastic atom-atom collisions
transmits the shock wave. In this case, the relationship between

the shock and particle velocity is given by

When the shock wave reaches the impurity, the left atom B
of the diatomic will experience a collision with the adjacent
host atom traveling toward it with velocityν0 (see Figure 1);
we define this time ast ) 0. If we assume for now that the
diatomic isrigid, then simple kinematics allow us to estimate
the final translational kinetic energy and velocity of the impurity
after this first collision. The molecule translates to the right
following the first collision for a timet ) τ until it encounters
the host atom to its immediate right, leading to asecondatom-
molecule collision. During the time interval 0< t < τ, the
impurity itself is responsible for the shock wave propagation.
Within the hard-sphere idealization, this second collision can
also be analyzed easily using elementary kinematics. Depending
on the particular mass values chosen, the diatomic will continue
to move (to the left or to the right) following this second
collision, and thus more collisions may occur as well. For
simplicity, however, we will neglect these higher order collisions
in our development below.
During the collisions between the host atom neighbors and

the diatomic molecule, its bond does not remain rigid but can
undergo excitation due to the forces acting on it. Classical,
semiclassical, and quantum mechanical theories of collision-
induced vibrational excitation in the gas phase were developed
many years ago by a number of workers.51,57-61 In these
theories, individual atom-diatom encounters were treated. In
the solid, however, the diatomic molecule will experience two
(or more)correlatedimpulsive interactions with multiple lattice
atoms as the shock wave passes through the impurity. Together,
these impulses determine the overall ultrafast vibrational excita-
tion of the system. As we will see below, the timing of these
interactions, and its dependence on collision energies and
particle masses, can lead to unusual nonmonotonic dependence
of the final vibrational energy on shock velocity that is in marked
contrast with the conventional single-collision theory of energy
exchange.

III. Theory

In this section, we briefly review the classical theory of
collision-induced vibrational excitation57-61 and describe our
extension to the case of shocked solids. The simplest gas phase
version of this model treats a collinear A+ BC atom-diatom
collision. The diatomic vibration is approximated by a harmonic
oscillator with frequencyω, and the intermolecular interaction
is modeled by a purely repulsive exponential potential, given
by

whered is the distance between atoms A and B,d0 andV0 )
V(d0) are constants, andL is the exponential scale parameter of
the potential. We can express this interaction in terms of the
distance between the collider and the diatomic center of mass
(R) and the B-C bond length (r):

This defines the mass ratio

Figure 1. Schematic view of a small region of the one-dimensional
solid. The host lattice atoms with massmA are shown as open circles,
while the diatomic impurity with atomic massesmB andmC are shown
as larger, shades circles.

νs ) l
l - d

ν0

V(d) ) V0e
-(d-d0)/L (1)

d) R-
mC

mB + mC
r ≡ R- Rr (2)
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In terms ofδr ) r - re, the deviation of the oscillator from its
equilibrium bond length,re, the interaction potential can be
written as

In this simple theory, we assume that the vibrational motion is
of small amplitude and described by a harmonic potential. In
the limit δr , L, the factor exp(Rδr/L) = 1, and the equations
of motion forR(t) can be solved analytically. In this limit, the
diatomic molecule is treated as a rigid composite particle with
massmD ) mB + mC. The forces acting on the diatomic bond
as the result of this atom-rigid diatomic collision then
determine, approximately, the energy uptake by the B-C
vibration. (Note that this theory does not conserve total energy.)
The atom A initially approaches the stationary B-C diatomic

molecule from the left with a particle velocityν0. We define
the reduced massµ̃ of the host-rigid diatomic molecule as

The kinetic energy of the collider in the lab frame is given by

The relatiVe kinetic energy of the collider-diatomic system is

We now select the parametersd0 and V0 such that V0
exp(-Rre/L) ) E0. Then,R ) d0 corresponds to the turning
point of theR(t) motion. DefiningX(t) ) R(t) - d0, and
choosing the zero of time such thatX(0)) 0, Newton’s equation
of motion forX(t) can be solved exactly to yield:51,57-61

We now return our attention to the vibrational motion of the
B-C molecule. The approximate equations of motion forr(t)
are obtained by keeping (here) alinearizedapproximation to
the factor:

In addition, the explicit (but approximate) time dependence of
X(t) ) R(t) - d0 is incorporated into the interaction potential,
yielding

The resulting Newton’s equation of motion forδr(t) is then
given by

where the diatomic reduced mass is defined as

andω is the harmonic frequency of the diatomic vibration. The
time-dependent force acting on the diatomic bond is given by
the negative derivative of the time-dependent potential:

The resulting forced harmonic oscillator problem can be solved
exactly.51,57-61 For zero initial excitation, the final energy of
the vibrating diatomic is given by the square of the Fourier
transform of the force, evaluated at the oscillator frequencyω:

For the force given in eq 13, this integral can be evaluated
analytically, giving the result

This result was first published by Rapp57-59 and later tested
against numerical trajectory simulations by Kelly and Wolfs-
berg.60 The agreement between eq 15 and simulation ranges
from fairly poor to nearly quantitative. Empirical corrections
to improve this agreement were proposed by Kelly and
Wolfsberg.60 An important modification of this theory was
proposed by Mahan,61which improves the accuracy of the result
and gives the proper high-energy limit. This “refined impulse
approximation” recognizes that, at very high energies, the atom-
diatom collision becomes the collision between the twoatoms
A and B, with C acting as a bystander. In the above theory,
this modification is made by redefining the reduced massµ̃ as

which is appropriate for the A-B atom-atom collision.
We now extend this general model of collisional energy

transfer to the problem of vibrational excitation of molecules
in shocked solids. We build our theory on the approach
reviewed above, but with the key modification to treat the
multiple, correlated collisionsexperienced by the molecule as
the shock wave passes.
As Figure 1 illustrates, the first A+ BC collision is not the

whole story when the molecule is embedded in a solid.
Following this collision, the molecule will itself be induced to
translate to the right. Assuming for now hard-sphere kinematics,
the kinetic energy of the diatomic in a space-fixed frame
following the first collision can be easily determined by
conservation of kinetic energy and momentum. The lab frame
velocity of the diatomic after the collision is

The diatomic molecule will translate for a timeτ and will then
experience asecondcollision, this time with the lattice atom to
its right. We define the distance which the diatomic must
traverse between collisions asΛ, which is effectively the
difference between the equilibrium and hard-sphere molecule-
lattice contact distances. The simplest estimate of the delay
time of the second collision is the distance traveled divided by
the velocity:

R )
mC

mB + mC
(3)

V(R,δr) ) V0 exp[-
Rre
L ] exp[-

R- d0
L ] exp[R δr

L ] (4)

µ̃ )
mAmD

mA + mD
)

mA(mB + mC)

mA + mB + mC
(5)

K0 ) 1/2mAν0
2 (6)

E0 ) 1/2µ̃ν0
2 (7)

exp(-
X(t)
L ) ) sech2 (ν0t

2L) (8)

exp(Rδr
L ) = 1+ Rδr

L
(9)

V(r,t) ) E0 sech
2(ν0t
2L)[1+ R δr

L ] (10)

µ δr̈ + µω2 δr ) F(t) (11)

µ )
mBmC

mB + mC
(12)

F(t) ) -
RE0
L

sech2 (ν0t
2L) (13)

Evib ) 1
2µ
|∫-∞

∞
F(t)eiωt dt|2 (14)

Evib ) (RE0
L )2( 12µ)(4πωL2

ν0
2 )2 csch2 (πωL

ν0 ) (15)

µ̃ f
mAmB

mA + mB
(16)

νD )
2ν0

1+ mD/mA
(17)

τ ) Λ/νD (18)
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The theoretical predictions (see below) depend sensitively on
this time delay, and a more refined estimate ofτ improves the
results. This can be accomplished by taking into account the
finite time required for the diatomic to achieve the velocityνD
and the corresponding finite slowdown time accompanying the
second collision. Using the analytic solution to the equation
of motion given in eq 8, the time delay can be approximated as

whereL0 and Lf are the exponential scale parameters in the
interatomic potential appropriate for the first A-B collision and
second C-A collision, respectively.
The second collision subjects the diatomic molecule to a

second impulsive force. The form of this force is the same as
given in eq 13, but with modified mass, energy, potential, and
velocity parameters and a delay in time. The relative kinetic
energy of the moving diatomic and stationary collision partner
(which has massmA) is given by

The total force F(t) acting on the diatomic is then given
approximately by

where

Both of these forces are negative and thus act to compress the
diatomic bond. The mass factorâ is given by

In the frequency domain, the total force becomes

where

is the Fourier transform ofF(t). From eq 14, the energy uptake
in the shocked molecule is then given by

The excitation that would result from a pair ofuncorrelated
collisions is modulated by a factor that depends on the time lag
betweenthe two collisions. In other words, the excitation
depends on thetime correlation of the multiple collisions
affecting the molecule.
For a given diatomic frequencyω, this correlation can lead

to nonmonotonic energy uptake vs shock velocity. Our model
neglects the effect of vibrational excitation of the diatomicsand
the resulting nonzero-amplitude oscillationson the time or the
kinematics of the second collision. We have also treatd only

two collisions in the present discussion. In general, further
collisions will occur; these and other effects can be incorporated
into the theory at the expense of simplicity.
The theory developed here is based on a classical mechanical

treatment of both the translational and vibrational dynamics.
This was done to allow a direct comparison of the analytic
theory with many-body molecular dynamics simulations (see
the next section). Quantum effects in molecular vibrational
dynamics can, of course, be important, especially at low
temperatures and for light particles such as hydrogen atoms.
An extension of the above analysis to treat fully quantum
mechanical vibrations is straightforward; indeed, classical,
semiclassical, and quantum mechanical versions of the energy
transfer theory of gas phase collisional vibrational excitation
have been developed and tested extensively,51,57-61 and those
results could be adapted to the present application. A com-
parison with full many-body simulations would not be straight-
forward in the quantum case, and so we restrict our analysis
here to classical mechanics.

IV. Results

In this section, we test the predictions of our theory against
molecular dynamics simulations of a model system. The model
consists of a one-dimensional monatomic solid containing a
single diatomic impurity molecule. The full infinite system is
approximated by a chain of 20 atoms, with free boundary
conditions. The impulsive shock-induced energy transfer occurs
on an extremely short time scale while the shock front passes
through the molecule, and the energy transfer is insensitive to
the number of atoms in the system and the form of the boundary
conditions.
The mass of the host atoms are chosen to be equal to that of

Ar: mA ) 39.95 amu. We consider a homonuclear diatomic
impurity molecule and examine two cases: a “light” diatomic
with mB ) mC ) mA and a “heavy” diatomic withmB ) mC )
2mA. The A-A, A-B, and A-C interaction potentials are
taken to be of the Lennard-Jones form:

with parametersσ ) 3.4 Å andε ) 83.3 cm-1; these values
correspond to the values for the Ar-Ar van der Waals
interaction. The diatomic bond is modeled by a harmonic
potential

The force constantk is chosen to give the desired vibrational
frequencyω. The equilibrium distancere is chosen to be 21/6σ,
the same as the host-host and host-diatomic equilibrium
distances.
The initial conditions of the system are generated as follows.

The lattice is first equilibrated at a temperatureT ) 15 K by
trajectory integration and velocity rescaling. Then, the velocity
of the host atom on the far left terminus of the chain is increased
by a positive increment to give the initial particle velocityν0.
The result is an impulsive excitation that travels from left to
right with a shock velocityνs > ν0. For this system, we find
that the relationνs = 1.9ν0 is obeyed. The diatomic molecule
contains no vibrational energy initially, except for a small
thermal contribution. Rapid excitation of the diatomic occurs
as the impulsive excitation passes through it. The simulation
is continued until the diatomic energy becomes approximately
constant after this excitation. We characterize the energy uptake
as a function of system parameters and initial particle velocity

VLJ(r) ) 4ε[(σr )
12

- (σr )
6] (28)

U(r) ) 1/2k(r - re)
2 (29)

τ ) Λ
νD

+ ln(4)(L0ν0
+
Lf
νD) (19)

ED ) 1/2µ̃νD
2 (20)

F(t) ) F1(t) + F2(t-τ) (21)

F1(t) ) -
RE0
L0

sech2 ( ν0t
2L0) (22)

F2(t) ) -
âED
Lf

sech2 (νDt
2Lf) (23)

â )
mB

mB + mC
(24)

F̂(ω) ) F̂1(ω) + F̂2(ω) exp(iωτ) (25)

F̂(ω) )∫-∞

∞
F(t)eiωt dt (26)

Evib ) (1/2µ) ([F̂1(ω)]
2 + [F̂2(ω)]

2 +
2F̂1(ω) F̂2(ω) cos(ωτ)) (27)
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by running single trajectories; because of the low temperature
and lack of initial excitation of the diatomic, we find that
averaging over trajectory ensembles yields the virtually the same
results as single trajectories.
In order to apply the theory developed in the previous section,

the Lennard-Jones intermolecular potential must be approxi-
mated by an exponential interaction of the form given in eq 2.
We accomplish this by matching the exponential potential and
its first derivative to the Lennard-Jones at the (energy-dependent)
turning point d0. For the first collision, the relative kinetic
energy isE0. The turning point on the Lennard-Jones potential
is then given in terms of the energy and potential parameters
by

We then calculate theenergy-dependentpotential scale param-
eter by the requirement that the slope of the exponential
approximate potential by equal to that of the Lennard-Jones
interaction atr ) d0:

A similar analysis, withE0 replaced byED (see eq 20), gives
the scale parameterLf for the second collision.
In Figure 2, we show the force acting on the diatomic bond

as a function of time for the system consisting of a “light”
diatomic molecule withω ) 2000 cm-1 andmB ) mC ) mA.
Three particle velocities are considered:ν0 ) 6000, 9000, and
10 500 m s-1 in Figure 2a-c, respectively. The results of
molecular dynamics simulation are compared with theF(t)
predicted by the theory developed in the previous section. The
qualitative form of the force, consisting of multiple impulsive
collisions affecting the diatomic oscillator, is apparent in the
figure. Two main impulses are visible, separated by a delay
time that decreases with increasing collider velocity. The
amplitudes and widths of the impulses, as well as the delay
time, are well-approximated by the theory. Also visible in the
figure are much smaller features at longer times, resulting from
higher order collisions which are neglected in our simple model.
The theoretical forceF(t) was calculated using eqs 21-23,

with the potential parameters estimated from eqs 30 and 31.
As the energy of the collisions increases, we find that inclusion
of the Mahan modification of eq 16 and eq 7 leads to a more
accurate prediction of the simulated forces. At the lowest
collision velocity, shown in Figure 2a, the theory underestimates
the amplitude of the first impulse. In this case, neglecting the
Mahan modification would actually lead to better agreement.
For simplicity, though, we always include this modification for
the first collision, which is of highest energy, but use the
unmodified prediction for the second collision; we find that this
approximation gives fairly accurate predictions of energy
transfer over a wide range of collision energies (see below).
More accurate schemes are possible, at the expense of simplic-
ity.63

In Figure 3, we show the spectral densities of the theoretical
forces, defined asS(ω) ) |F(ω)|2, whereF(ω) is given by eqs
25 and 26. Also shown is the “incoherent” resultSincoh(ω) )
|F1(ω)|2 + |F2(ω)|2. The plots have been normalized by
dividing bySincoh(0). We treat the casesν0 ) 6000 and 10 500
m s-1 in Figure 3, a and b, respectively. The spectral density
is proportional to the frequency-dependent energy uptake of the
oscillator, as indicated by eq 27, while the incoherent result

would be obtained if an ensemble of systems withrandomdelay
times between the two impulses were considered. The modula-
tion of S(ω) around the incoherent curve results from the
systematic correlation in time between the first and second
collision.
As the collider velocity is increased, the collisions become

more impulsive, and the widths of the individual peaks inF(t)
decrease. This leads to anincreasingwidth of the power
spectrum with increasing collider velocity in the frequency
domain. In the incoherent case, this would result in a monotonic
increase in energy uptake with collider velocity for a fixed
oscillator frequencyω. With the modulation of the spectral
density resulting from the correlation between collisions,
however,nonmonotonicdependence of energy uptake with
collider velocity can result.
In Figure 4 a,b, we showF(t) and S(ω) for the “heavy”

diatomic case:mB ) mC ) 2mA, again withω ) 2000 cm-1.
The collider velocity isν0 ) 10 500 m s-1. Figure 4a indicates
that our theory does an excellent job of reproducing the
simulation results for this case as well. The larger mass disparity
between the host atoms and the diatomic molecule results in
less collisional energy transfer during the first collision nd thus
a much smaller amplitude of the second impulse. This is

d0 ) σ( 2

1+ x1+ E0/ε)
1/6

(30)

L0(E0) ) - ( VLJ(r)

dVLJ(r)/dr)r)d0 (31)

a

b

c

Figure 2. Forces acting on the diatomic bond vs time, for light diatomic
case withω ) 2000 cm-1. ν0 ) (a) 6000, (b) 9000, and (c) 10 500 m
s-1. See text for discussion.
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reflected in the frequency domain by a smaller amplitude of
the modulation around the incoherent result.
In Figure 5, the dependence of vibrational excitation on

collider velocity is shown for anω ) 2000 cm-1 oscillator.
Figure 5a shows the results for the “light” diatomic case (mB )
mC ) mA), while Figure 5b shows the “heavy” (mB ) mC )
2mA) diatomic results. The results of molecular dynamics

simulation are compared with the predictions of eq 27. In the
light diatomic case, the threshold for excitation is approximately
ν0 ) 5000 m s-1 and is well-reproduced by the theory. In
addition, a pronounced turnover in the energy transfer vs collider
velocity is observed. This feature is modeled, at least qualita-
tively, by the simple theory developed here. In Figure 5b, the
results for the heavy diatomic are compared with the theory,
and nearly quantitative agreement is obtained over the entire
energy range considered. In this case, the shallower modulation
of the spectral density by the “coherent” term in eq 27 is not
sufficient to give nonmonotonic energy transfer, a prediction
that is in agreement with the simulation data.

V. Discussion

In this paper, we have presented a simple theory of shock-
induced vibrational excitation of molecules in solids. Our model
focuses on the ultrafast dynamics occurring in the shock front
itself and is built on the theories of translational to vibrational
energy transfer first introduced in the 1960s. The key modifica-
tion of this previous work is the focus on multiple correlated
impulsive forces acting on the internal degrees of the molecules
as the shock wave passes. We have illustrated this approach
for the highly idealized case of a spatially localized shock front
in a one-dimensional monatomic solid and found that the model
developed provides a qualitative description of the behavior
observed in molecular dynamics simulations and, in some cases,
gives quantitative predictions of the vibrational energy uptake
as a function of collider (and thus shock) velocity. Although
we consider a one-dimensional model in this paper, we have
observed similar qualitative behavior in simulations of two-
dimensional solids, and an appropriate generalization of present
model should be applicable there as well.
The problem of energy uptake of molecules in shocked solids

has been the subject of a number of previous studies. Recent
work has focused on the mechanism of multiphonon up-pumping
of the intramolecular degrees of freedom by a (locally) hot

a

b

Figure 3. Normalized spectral densities of the theoretical forces, as
given in eqs 25 and 26. Also shown are the incoherent results, as
described in the text.ν0 ) (a) 6000 and (b) 10 500 m s-1.

a

b

Figure 4. (a) Forces and (b) normalized spectral densities for the heavy
diatomic case withω ) 2000 cm-1. Collider velocity isν0 ) 10 500
m s-1. See text for discussion.

a

b

Figure 5. Vibrational excitation vs collider velocity for aω ) 2000
cm-1 oscillator: (a) light diatomic case; (b) heavy diatomic case. See
text for discussion.
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lattice.8,16,24,26,31 The thermal excitation of the lattice results
from energy decay of the passing shock front into collective
phonon degrees of freedom. The physics of this process, and
the theories developed to model it, treat the lattice vibrations
as incoherent, with no well-defined relationship between the
phases of the various phonon modes. In contrast, the mechanism
we consider in the present paper involves multiple impulsive
collisions affecting the atoms of the molecule being excited.
This results from the nature of the traveling shock wave: highly
localized in space and with a well-defined velocity. In photon
language, this leads to acoherentmechanism for excitation.
The phase relation between different lattice vibrations plays a
fundamental role in this coherent excitation. Our model is based
on a simple, but manifestly nonlinear, description of the
molecule-shock wave interaction in terms of collisional
kinematics. A coherent generalization of the multiphonon up-
pumping theories would provide an alternative approach to
ultrafast molecular excitation within the traveling shock front.
The model developed here treats the shock waves as a highly

idealized impulse that is sharp on the atomic scale and
propagates without relaxation through a cold lattice. Continuum
and atomistic theoretical treatments indeed suggest that shock
fronts in multidimensional can be highly localized. In real
systems, however, lattice imperfections and relaxation processes
may lead to more complex shock wave structure and ill-defined
shock fronts. Nevertheless, one excepts that a supersonic
disturbance traveling through a solid will lead to impulsive
collisional effects at the moelcular scale, suggesting least a
general relevance of our basic model. To treat real systems
more accurately, the theory developed here could, in principle,
be generalized to represent more complex shock structure as a
superposition of multiple coherent events. The specific nature
of the shock front would then determine whether the relative
timings were correlated or not and thus whether their effects
would be added coherently or incoherently.
In our work, we have ignored the quantum mechanical nature

of molecular vibrations. A generalization to include quantum
effects can be achieved by simply using the spectral densities
for correlated collisions as input to the time-dependent Schro-
dinger equation for the molecular vibrations. This has, in fact,
been implemented and tested for the case of gas phase collisional
energy energy transfer.51,57-61 Here, we emphasize that the role
of correlated collisions closly spaced in time would be at least
qualitatively the same if the molecular vibrations were treated
quantum mechanically.
The theory developed in this paper suggests a possible

approach to the rational design of insensitive energetic materials.
Within the scope of the simple model considered, the (limited)
goal of inhibiting vibrational energy uptake can be achieved
by adjusting the physical parameters of the molecular impurity
(i.e., the mass and force constant) so that the diatomic vibrational
frequency falls within a relative minimum of the modulated
spectral density (see, for example, Figure 3). This strategy is,
in a sense, complementary to the approach used in coherent
control of chemical dynamics by shaped laser pulses.52-56 In
the optical control experiment, the molecular characteristics are
fixed, while the perturbing forces felt by the molecule are
adjusted by shaping the optical pulse wave form. Here,
however, the impulsive forceF(t) is fixed by the shock
characteristics and the geometry of the system, and the dynami-
cal properties of the molecule are varied to give the desired
response to this fixedF(t). The limited goal of minimizing
vibrational excitation of the diatomic molecule in a given
perturbing shock environment is a highly idealized but well-
defined problem. Whether or not this has any relevance to the

practical problem of rational “dynamical design” of insensitive
explosives remains to be seen and will be addressed in future
research.
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